quarta-feira, 23 de outubro de 2019

AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

=

X

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



radiação eletromagnética é uma oscilação em fase dos campos elétricos e magnéticos, que, autossustentando-se, encontram-se desacoplados das cargas elétricas que lhe deram origem. As oscilações dos campos magnéticos e elétricos são perpendiculares entre si e podem ser entendidas como a propagação de uma onda transversal, cujas oscilações são perpendiculares à direção do movimento da onda (como as ondas da superfície de uma lâmina de água), que pode se deslocar através do vácuo. Dentro do ponto de vista da Mecânica Quântica, podem ser entendidas, ainda, como o deslocamento de pequenas partículas, os fótons.
O espectro visível, ou simplesmente luz visível, é apenas uma pequena parte de todo o espectro da radiação eletromagnética possível, que vai desde as ondas de rádio aos raios gama. A existência de ondas eletromagnéticas foi prevista por James Clerk Maxwell e confirmada experimentalmente por Heinrich Hertz. A radiação eletromagnética encontra aplicações como a radiotransmissão, seu emprego no aquecimento de alimentos (fornos de micro-ondas), em lasers para corte de materiais ou mesmo na simples lâmpada incandescente.
A radiação eletromagnética pode ser classificada de acordo com a frequência da onda, em ordem crescente, nas seguintes faixas: ondas de rádiomicro-ondasradiação terahertzradiação infravermelhaluz visívelradiação ultravioletaraios X e radiação gama.

    Ondas eletromagnéticas[editar | editar código-fonte]

    Representação esquemática de uma onda eletromagnética linearmente polarizada produzida por um dipolo elétrico oscilante (à esquerda). A onda se propaga ao longo do eixo horizontal com comprimento de onda λ (ao centro). O campo elétrico, o campo magnético e o vetor de onda são representados, respectivamente, em azul, vermelho e preto (à direita).
    As ondas eletromagnéticas primeiramente foram previstas teoricamente por James Clerk Maxwell e depois confirmadas experimentalmente por Heinrich Hertz. Maxwell notou as ondas a partir de equações de electricidade e magnetismo, revelando sua natureza e sua simetria. Faraday mostrou que um campo magnético variável no tempo gera um campo eléctrico. Maxwell mostrou que um campo eléctrico variável com o tempo gera um campo magnético, com isso há uma autossustentação entre os campos eléctrico e magnético. Em seu trabalho de 1862, Maxwell escreveu:
    "A velocidade das ondas transversais em nosso meio hipotético, calculada a partir dos experimentos electromagnéticos dos Srs. Kohrausch e Weber, concorda tão exactamente com a velocidade da luz, calculada pelos experimentos óticos do Sr. Fizeau, que é difícil evitar a inferência de que a luz consiste nas ondulações transversais do mesmo meio que é a causa dos fenômenos eléctricos e magnéticos."[carece de fontes]

    Ondas harmônicas[editar | editar código-fonte]

    Uma onda harmônica é uma onda com a forma de uma função senoidal, como na figura , no caso de uma onda que se desloca no sentido positivo do eixo dos .
    A distância  entre dois pontos consecutivos onde o campo e a sua derivada têm o mesmo valor, é designada por [comprimento de onda] (por exemplo, a distância entre dois máximos ou mínimos consecutivos). O valor máximo do módulo do campo, , é a sua {amplitude}.
    Onda Harmônica
    O tempo que a onda demora a percorrer um comprimento de onda designa-se por {período}, .
    O inverso do período é a frequência , que indica o número de comprimentos de onda que passam por um ponto, por unidade de tempo. No sistema SI a unidade da frequência é o hertz, representado pelo símbolo Hz, equivalente a .
    No caso de uma onda eletromagnética no vácuo, a velocidade de propagação é  que deverá verificar a relação:
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    A equação da função representada na figura acima é:
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde a constante  é a fase inicial. Essa função representa a forma da onda num instante inicial, que podemos admitir .
    Para obter a função de onda num instante diferente, teremos que substituir  por , já que a onda se propaga no sentido positivo do eixo dos , com velocidade .
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    usando a relação entre a velocidade e o período, podemos escrever:
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Se substituirmos , obteremos a equação que descreve o campo elétrico na origem, em função do tempo:
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    assim, o campo na origem é uma função sinusoidal com período  e amplitude . O campo em outros pontos tem exatamente a mesma forma sinusoidal, mas com diferentes valores da fase.[1]

    Propriedades[editar | editar código-fonte]

    Os campos eléctrico e magnético obedecem aos princípios da superposição de ondas, de modo que seus vectores se cruzam e criam os fenômenos da refracção e da difração.[carece de fontes] Uma onda eletromagnética pode interagir com a matéria e, em particular, perturbar átomos e moléculas que as absorvem, podendo os mesmos emitir ondas em outra parte do espectro.
    Como qualquer fenômeno ondulatório, as ondas eletromagnéticas podem interferir entre si. Sendo a luz uma oscilação, ela não é afetada pela estática eléctrica ou por campos magnéticos de uma outra onda eletromagnética no vácuo. Em um meio não linear, como um cristal, por exemplo, interferências podem acontecer e causar o efeito Faraday, em que a onda pode ser dividida em duas partes com velocidades diferentes.[carece de fontes]
    Na refracção, uma onda, transitando de um meio para outro de densidade diferente, tem alteradas sua velocidade e sua direcção (caso esta não seja perpendicular à superfície) ao entrar no novo meio. A relação entre os índices de refracção dos dois meios determina a escala de refração medida pela lei de Snell:
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Nesta equação, i é o ângulo de incidência, N1 é o índice de refração do meio 1, r é o ângulo de refração, e N2 é o índice de refração do meio 2.
    A luz se dispersa em um espectro visível porque é reflectida por um prisma, devido ao fenômeno da refração. As características das ondas eletromagnéticas demonstram as propriedades de partículas e da onda ao mesmo tempo, e se destacam mais quando a onda é mais prolongada.

    Modelo de onda eletromagnética[editar | editar código-fonte]

    Um importante aspecto da natureza da luz é a frequência uma onda, sua taxa de oscilação. É medida em hertz, a unidade SIU de frequência, na qual um hertz (1,00 Hz) é igual a uma oscilação por segundo. A luz normalmente tem um espectro de frequências que, somadas, juntos formam a onda resultante. Diferentes frequências formam diferentes ângulos de refração. Uma onda consiste nos sucessivos baixos e altos, e a distância entre dois pontos altos ou baixos é chamado de comprimento de onda. Ondas eletromagnéticas variam de acordo com o tamanho, de ondas de tamanhos de prédios a ondas gama pequenas menores que um núcleo atômico. A frequência é inversamente proporcional ao comprimento da onda, de acordo com a equação:
    .
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Nesta equação, v é a velocidade, λ (lambda) é o comprimento de onda, e f é a frequência da onda.
    Na passagem de um meio material para outro, a velocidade da onda muda, mas a frequência permanece constante. A interferência acontece quando duas ou mais ondas resultam em um novo padrão de onda. Se os campos tiverem as componentes nas mesmas direções, uma onda "coopera" com a outra (interferência construtiva); entretanto, se estiverem em posições opostas, pode haver uma interferência destrutiva.

    Modelo de partículas[editar | editar código-fonte]

    Um feixe luminoso é composto por pacotes discretos de energia, caracterizados por consistirem em partículas denominadas fotões (pt) ou fótons (pt-BR). A frequência da onda é proporcional à magnitude da energia da partícula. Como os fótons são emitidos e absorvidos por partículas, eles actuam como transportadores de energia. A energia de um fóton é calculada pela equação de Planck-Einstein:
    .
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Nesta equação, E é a energia, h é a constante de Planck, e f é a frequência.
    Se um fóton for absorvido por um átomo, ele excita um electrão (pt) ou elétron (pt-BR), elevando-o a um alto nível de energia. Se o nível de energia é suficiente, ele pula para outro nível maior de energia, podendo escapar da atração do núcleo e ser liberado em um processo conhecido como fotoionização. Um elétron que descer ao nível de energia menor emite um fóton de luz igual a diferença de energia. Como os níveis de energia em um átomo são discretos, cada elemento tem suas próprias características de emissão e absorção.[carece de fontes]

    Espectro eletromagnético[editar | editar código-fonte]

    Espectro eletromagnético com o espectro de luz visível indicado
    O espectro eletromagnético é classificado normalmente pelo comprimento da onda, como as ondas de rádio, as micro-ondas, a radiação infravermelha, a luz visível, os raios ultravioleta, os raios X, até a radiação gama.
    O comportamento da onda eletromagnética depende do seu comprimento de onda. Ondas com frequências altas possuem comprimento de onda curto e, por outro lado, ondas com frequências baixas possuem comprimento de onda longo . Quando uma onda interage com uma única partícula ou molécula, seu comportamento depende da quantidade de fótons por ela carregada.[carece de fontes] Através da técnica denominada Espectroscopia óptica, é possível obter-se informações sobre uma faixa visível mais larga do que a visão normal. Um espectroscópio comum pode detectar comprimentos de onda de 2 nm a 2500 nm.
    Essas informações detalhadas podem informar propriedades físicas dos objetos, gases e até mesmo estrelas. Por exemplo, um átomo de hidrogênio emite ondas em comprimentos de 21,12 cm. A luz propriamente dita corresponde à faixa que é detectada pelo olho humano, entre 400 nm a 700 nm (um nanômetro vale 1,0×10−9 metro). As ondas de rádio são formadas de uma combinação de amplitude, frequência e fase da onda com a banda da frequência.


    Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro e fornece a distribuição dos comprimentos de onda no espectro em função da temperatura. A maior parte da irradiação ocorre em um comprimento de onda específico, chamado de comprimento de onda principal de irradiação, que depende da temperatura do corpo. Quanto maior a temperatura, maior a frequência da radiação e menor é o comprimento de onda:
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde
     é a radiância espectral medida em J•s−1•m−2•sr−1•Hz−1
     é a frequência medida em Hertz (Hz)
     é a temperatura do corpo negro medida em Kelvin (K)
     é a constante de Planck medida em Joule por Hertz (J/Hz)
     é a constante velocidade da luz medida em metros por segundo (m/s)
     é o número de Euler
     é a constante de Boltzmann medida em Joule por Kelvin (J/K)
    Relacionando com o espectro visível, devido ao comprimento de onda, objetos com temperaturas altas produzem luz de coloração próxima ao azul, enquanto objetos com temperaturas não tão altas podem gerar luz avermelhada (a faixa do espectro seguinte à visível é justamente o infravermelho). Por exemplo, um objeto vermelho quente irradia principalmente ondas longas da faixa visível do espectro (luzes avermelhada e alaranjada). Se for aquecido, passará a emitir menores comprimentos de onda (luzes azulada e esverdeada), e a distribuição das frequências faz a luz parecer branca aos olhos humanos. Esse efeito é chamado de "branco quente". Entretanto, mesmo em temperaturas superiores a 2000 K, 99% da energia irradiada está na faixa do infravermelho do espectro. Em outros casos, a matéria pode irradiar comprimentos de onda que não podem ser vistos pelo olho humano, como quando a temperatura é relativamente baixa ou extremamente alta.

    Lei de Stefan-Boltzmann[editar | editar código-fonte]

    Ver artigo principal: Lei de Stefan-Boltzmann
    Lei de Stefan-Boltzmann: a energia total emitida por um corpo é diretamente proporcional à quarta potência de sua temperatura. Em azul, o gráfico da energia total emitida calculado por Wien.
    Lei de Stefan-Boltzmann estabelece que a energia total irradiada por unidade de área superficial de um corpo negro, na unidade de tempo (radiação do corpo negro), ou densidade de fluxo energético, indicada por j*, é diretamente proporcional à quarta potência da sua temperatura absoluta:
    [7]
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde:
     é a energia total irradiada por um corpo negro por unidade de área, medida em Watts por metro quadrado (W / m2)
     é a temperatura do corpo em Kelvin (K)
     é a constante de Stefan-Boltzmann



    resistência elétrica de Planck ou impedância de Planck é a unidade de resistência elétrica, notada por ZP, no sistema de unidades naturais conhecido como unidades de Planck.
     29.9792458 Ω
    x
    AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

    =

    X
    FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    onde
     é a tensão elétrica de Planck
     é a corrente elétrica de Planck
     é a velocidade da luz no vácuo
     é a permissividade do vácuo
     é a resistência elétrica do vácuo



    ressonância elétrica ocorre em circuitos que contém tanto capacitores quanto bobinas quando a reatância capacitiva (Xc) e a reatância indutiva (Xl) sejam iguais. Neste caso a corrente não está nem atrasada nem adiantada em relãção à tensão, o que ocorre em circuitos com capacitores e indutores em "desequilíbrio".[1]

    Fórmula[editar | editar código-fonte]

    Temos a seguinte fórmula de freqüência de ressonância:
    • x
    • AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

      =

      X
      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

    • x
    • AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

      =

      X
      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

    • x
    • AS TRANSIÇÕES DOS ESTADOS FÍSICOS, DE ENERGIA E FENOMÊNICOS DE GRACELI, COMO TAMBÉM OS ESTADOS QUÂNTICO, E ESTADOS DE GRACELI DE ESTRUTURAS ELETRÔNICAS VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

      =

      X
      FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D